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Ray-based calculations of backscatter in laser fusion targets
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A steady-state model for Brillouin and Raman backscatter along a laser ray path is presented.
The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by
the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung
damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam
focusing are included. The numerical code deplete, which implements this model, is described.
The model is compared with traditional linear gain calculations, as well as “plane-wave” simulations
with the paraxial propagation code pf3d. Comparisons with Brillouin-scattering experiments at the
OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, p. 495 (1997)] show that laser
speckles greatly enhance the reflectivity over the deplete results. An approximate upper bound
on this enhancement, motivated by phase conjugation, is given by doubling the deplete coupling
coefficient. Analysis with deplete of an ignition design for the National Ignition Facility (NIF)
[J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, p. 755 (1994)], with a peak
radiation temperature of 285 eV, shows encouragingly low reflectivity. Doubling the coupling to
bound the speckle enhancement suggests a less optimistic picture. Re-absorption of Raman light is
seen to be significant in this design.

PACS numbers: 52.35.Mw, 52.38.Bv, 52.38.-r, 52.65.-y, 52.57.-z
Keywords: laser-plasma interaction; inertial confinement fusion; backscatter; reflectivity; stimulated Brillouin
scattering; stimulated Raman scattering; plasma light propagation

I. INTRODUCTION

Laser-plasma interaction (LPI) [1] is an important
plasma-physics problem which poses serious challenges to
theoretical modeling. LPI is the basis of several applica-
tions, including laser-based particle acceleration [2] and
the backward Raman amplifier [3]. Moreover, for inertial
confinement fusion (ICF)[4, 5] to succeed, LPI must not
be so active that it prevents the desired laser energy from
being delivered to the target, with the desired spatial and
temporal behavior. This paper focuses on modeling the
backscatter instabilities, where a laser light wave (mode
0) decays into a backscattered light wave (mode 1) and
a plasma wave (mode 2). In stimulated Raman scatter-
ing (SRS) and stimulated Brillouin scattering (SBS), the
plasma wave is, respectively, an electron plasma wave
and an ion acoustic wave. These LPI processes pose a
serious risk to indirect-drive ICF [5].

A wide array of computational tools is used to model
LPI, ranging from rapid (∼secs) calculations of linear
gains along 1D “ray” profiles to massively-parallel ki-
netic particle-in-cell simulations. We present here a new
tool, called deplete, to the less computationally ex-
pensive end of this spectrum. deplete solves for the
pump intensity and scattered-wave spectral density for
a set of scattered frequencies, in steady-state, along a
1D profile of plasma conditions. Pump depletion is in-
cluded, and the plasma waves are assumed to be in the
strong damping limit (i.e., they do not advect). Fully
kinetic (although linear) formulas are used for various
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quantities like the coupling coefficient. Bremsstrahlung
noise and damping, as well as Thomson scattering (TS),
are included. The deplete model, especially the noise
sources, in some ways resembles that of Ref. [6]. Other
similar works which have influenced our thinking, and
use 1D coupled-mode equations, are Refs. [7]-[8].

deplete is a “ray-based” model in that a laser beam
is approximated by many rays, along which plasma con-
ditions are found. We usually use geometric-optics ray
tracing to find the conditions along each ray path from
the output of a radiation-hydrodynamics code. However,
the deplete equations treat the ray paths as straight
lines, and assume that the backscattered light for each
ray exactly retraces the incident ray. Details of this
methodology, and its limits, are discussed in Sec. III.

deplete is similar to the code newlip, which cal-
culates linear gains for SRS and SBS along 1D profiles
(newlip is discussed here in Appendix A). Both codes
take seconds to analyze one ray path from the laser en-
trance to the high-Z wall in an ICF ignition design. How-
ever, deplete includes substantially more physics than
newlip, such as pump depletion, noise sources, and re-
absorption of scattered light. deplete moreover pro-
vides pump and scattered intensities, which unlike gains
can be directly compared with experiment and more so-
phisticated LPI codes. Despite its simplicity, deplete
agrees well in certain cases with results from the 3D
paraxial laser propagation code pf3d. This is quite
promising given deplete’s much lower computing cost.

There is important physics which deplete does not
capture, with laser speckles or hot spots being one of
the most important. Recent SBS experiments [9, 10] at
the OMEGA Laser Facility [11] show good agreement be-
tween measured reflectivity and pf3d predictions, while
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deplete gives a lower value. This is due to the speckle
patten of the phase plate smoothed lasers. Sec. VIII de-
scribes one approximate way to bound the speckle en-
hancement by doubling the coupling coefficient; the re-
sulting deplete reflectivity always exceeds the exper-
imental level. A more sophisticated idea for handling
speckles is outlined in the conclusion. Additional beam
smoothing, like polarization smoothing (PS) and smooth-
ing by spectral dispersion (SSD), reduce the effective
speckle intensity and can reduce the reflectivity even be-
low the speckle-free deplete level.

The paper is organized as follows. Section II de-
rives the governing equations for the pump intensity and
scattered-wave spectral density. Our ray-based method-
ology and model limits are discussed in Sec. III. The
numerical method is given in Sec. IV, including a quasi-
analytic solution for the coupling-Thomson step. Section
V compares deplete with newlip linear gains and pf3d
“plane-wave” simulations on prescribed profiles. The re-
lationship between Thomson scattering and linear gain is
discussed in Sec. VI. In Sec. VII we compare depleteto
the experimental and pf3d SBS reflectivities in recent
OMEGA shots. Sec. VIII presents deplete analysis of
an ignition design with a 285 eV radiation temperature
for the National Ignition Facility (NIF) [12]. In partic-
ular, we show the effect of scattered light re-absorption
and put a bound on speckle effects. We conclude and
discuss future prospects in Sec. IX. A review of newlip
and its linear gain is presented in Appendix A. Appendix
B details the numerics of deplete’s coupling-Thomson
step.

II. GOVERNING EQUATIONS

We derive coupled-mode equations, in time and one
space dimension, for the slowly-varying wave envelopes,
and find the resulting intensity equations. We do this for
the light waves first, and then the plasma wave in the
strong damping limit. Since our approach is standard we
summarize some steps. We take these equations in steady
state to apply independently at each scattered frequency,
and transition to a spectrum of scattered light per an-
gular frequency. This may be viewed as a “completely
incoherent” treatment of the scattered light at different
frequencies. Bremsstrahlung damping and fluctuations,
and TS, are then added phenomenologically. Focusing of
the whole beam is finally accounted for, giving the system
deplete solves. This section culminates in the deplete
system, Eqs. (54-55), on which some readers may wish to
focus.

A. light-wave action equations

Let z be distance along the ray path, and assume all
wave vectors and gradients are in z (∂x = ∂y = 0).
z = 0 is taken as the left edge of the domain (the

“laser entrance”), where we specify the right-moving
pump laser; we also specify boundary values for the left-
moving backscattered wave at the right edge z = Lz. The
light waves are linearly polarized in y and represented
by their vector potentials ~Ai = (1/2)Ai(z, t)ŷeiψi + cc,
where i = 0, 1 for the pump and scattered wave, respec-
tively. Ai is the slowly-varying complex envelope, and
we use the dimensionless ai ≡ eAi/mec. ψi(z, t) is the
rapidly-varying phase with ki ≡ ∂zψi and ωi ≡ −∂tψi.
Let σi ≡ ki/|ki| with σ0 = σ2 = +1 and σ1 = −1 (ap-
propriate for backscatter). Thermal fluctuations give rise
to both light waves and plasma waves. However, upon
appropriate averaging the field amplitudes of these fluc-
tuations vanish (but their mean squares do not). The
amplitudes Ai (and nj2 below) represent only the coher-
ent, and not the noise, components of the fields. We
insert a bremsstrahlung noise source and TS to the in-
tensity equations below.

From the Maxwell equations, and conservation of
canonical transverse momentum mevye = eAy, we find
Ay = ( ~A0 + ~A1) · ŷ satisfies

[
∂tt − c2∂zz + ω2

pe

]
Ay = −ω2

pe

ne2
ne

Ay. (1)

ñj = nj + Nj2 is the total number density for species
j (j = e for electrons, i for an ion species), Nj2 =
(1/2)nj2eiψ2 + cc, and nj2 is the slowly-varying plasma-
wave envelope. We define ωpj ≡ [njZ2

j e
2/ε0mj ]1/2,

vTj ≡ [Tj/mj ]1/2 and λDj ≡ vTj/ωpj , with Zj the charge
state. As usual, the massive ions are treated as fixed in
the transverse current. (We look forward to a circum-
stance where a positively-charged species must be con-
sidered mobile, such as an electron-positron plasma!)

Following, e.g., Ref. [13], we introduce the small pa-
rameter δ ∼ ω−1

i ∂t lnX ∼ k−1
i ∂x lnX for X = Ai, ki,

etc. We order ∂t, ∂x ∼ δ, ψi ∼ δ−1, and the right-hand
side of Eq. (1) ∼ δ. To order δ0, we obtain the free-wave
dispersion relation

ω2
i = ω2

pe + c2k2
i i = 0, 1. (2)

For the steady-state conditions considered below we take
ωi to be constant and find the eikonal cki(x) = σiηiωi
with ηi ≡ [1−ne/nci]1/2 and nci ≡ ω2

i ε0me/e
2 the critical

density of mode i. Also, the group velocity is vgi ≡ σiηic.
Assuming perfect phase matching (k0 = k1 + k2, ω0 =

ω1 + ω2), the resonant order δ terms in Eq. (1) yield the
envelope equations:

L0a0 = − i
4
ω2
pe

ω0

ne2
ne

a1, (3)

L0a1 = − i
4
ω2
pe

ω1

n∗e2
ne

a0. (4)

The operator Li ≡ ∂t + vgi∂z + (1/2ωi)(∂tωi + c2∂zki).
Our quasi-monochromatic light waves (i = 0, 1) have
action density [14] Ni ≡ (me/8πre)ωiaia∗i where re ≡
e2/4πε0mec

2 ≈ 2.82 fm. We also define the (positive)



3

action flux Zi ≡ Ni|vgi| and intensity Ii ≡ ωiZi. In prac-
tical units,

|ai|2 =
Iiλ

2
i

Pemηi
(5)

where λi ≡ 2πc/ωi and Pem ≡ (π/2)mec
3/re ≈ 1.37 ×

1018 W·cm−2 · µm2. We form Eq. (3)×a∗0 + cc and
Eq. (4)×a∗1 + cc to find

−∂tN0 − ∂zZ0 = ∂tN1 − ∂zZ1 = J (6)

J ≡ −1
4
mec

2 Im[a∗0a1ne2]. (7)

B. plasma-wave action equations

We describe the plasma waves following the dielectric
operator approach of Cohen and Kaufman [15]:

ε(ω′2 + i∂t, k2 − i∂z)n2 = npnd, (8)

npnd ≡ χe(ω′2, k2)
c2k2

2

2ω2
pe

nea0a
∗
1.(9)

The charge-density fluctuation n2 ≡ −ne2 +
∑
i Zini2 ex-

periences a ponderomotive drive npnd. ω′2 ≡ ω2−~k2 ·~u is
the Doppler-shifted plasma-wave frequency in the frame
of the plasma flow ~u (ω2 is in the lab frame). ε ≡ 1+χ is
an operator, where the time and space derivatives reflect
envelope evolution and χ ≡ ∑

j χj is the total suscepti-
bility. χe in npnd is simply a function, not an operator.
χj is the (linear) kinetic, collisionless susceptibility of
Maxwellian species j:

χj ≡ − 1
2k2

2λ
2
Dj

Z ′(ζj); ζj ≡ ω′2
k2vTj

√
2
. (10)

Z(ζ) ≡ iπ1/2e−ζ
2
erfc(−iζ) is the plasma dispersion func-

tion [16] and erfc is the complimentary error function [17].
Gauss’s law relates n2 and nj2:

ne2 = −(1 + χI)n2, (11)

ni2 = −χi
(

1
Zi

+
me

mi

ε

χe

)
n2 (12)

≈ −χi
Zi
n2, (13)

with χI ≡
∑
i χi. For SRS, where the ion motion is

negligible, we usually take 1+χI → 1 to save computing
time.

Expanding ε for slow envelope variation, and retaining
only εr ≡ Re ε in the derivatives, gives

[∂t + vg2∂z + ν2 + iδω2]n2 = −inpnd

ε̇
. (14)

ε̇ ≡ ∂εr/∂ω
′
2, ε

′ ≡ ∂εr/∂k2, vg2 ≡ −ε′/ε̇ is the plasma-
wave group velocity, ν2 ≡ Im[ε]/ε̇ is the damping rate,
and δω2 ≡ −εr/ε̇ is the phase detuning.

We now assume the plasma wave is in the strong damp-
ing limit, where its advection is neglected: |vg2∂zn2| ¿
|ν2 + iδω2||n2|. This implies the instability is below its
absolute threshold so that steady-state solutions are ac-
cessible. Also going to steady-state, we find

ε(ω2, k2)n2 = npnd. (15)

Replacing ne2 via Eqs. (11) and (15) yields

J = ω0Γ̃1Z0Z1. (16)

The coupling coefficient Γ̃1 is

Γ̃1 ≡ ΓSIm
[χe
ε

(1 + χI)
]

=
ΓSgΓ
|ε|2 , (17)

ΓS ≡ 2πre
mec2

1
ω0

k2
2

k0|k1| , (18)

gΓ ≡ |1 + χI |2Imχe + |χe|2ImχI . (19)

The second form of Γ̃1 exhibits the resonance for |ε| ¿ 1.
The over-tilde on Γ̃1 indicates it will be modified below
to account for beam focusing. Γ̃1, and thus J , are usually
positive. We now have a closed system for modes 0 and
1, with no independent equation for mode 2:

∂tN0 + ∂zZ0 = −ω0Γ̃1Z0Z1, (20)

∂tN1 − ∂zZ1 = ω0Γ̃1Z0Z1. (21)

C. Steady-state equations for a spectrum of
scattered waves

We transition to steady state (∂t = 0) and work with
intensities. Since we have assumed ∂zωi = 0, we multiply
Eq. (20) by ω0 and Eq. (21) by ω1 to obtain

dzI0 = −ω0

ω1
Γ̃1I0I1, (22)

−dzI1 = Γ̃1I0I1. (23)

Here and elsewhere, dxf(x) denotes the ordinary deriva-
tive of a function of one variable, while ∂xf denotes the
partial derivative of a function of several variables.

The bremsstrahlung source and TS are expressed in
terms of spectral density i1(z, ω1) (intensity per angular
frequency). The scattered intensity is then I1 =

∫
dω1 i1.

We take Eq. (23) to apply independently at each ω1, and
integrate the coupling term in Eq. (22), to find

dzI0 = −
∫
dω1

ω0

ω1
Γ̃1I0i1, (24)

−∂zi1 = Γ̃1I0i1. (25)

This is a totally incoherent treatment of the scattered
light at different frequencies, and is unrealistic to the
extent there is spectral “leakage” between nearby ω1 in-
tervals due to, e.g., envelope evolution.
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D. Bremsstrahlung source and damping

We incorporate electron-ion inverse-bremsstrahlung
light-wave damping (κ0 and κ1) phenomenologically for
modes 0 and 1, as well as bremsstrahlung noise (Σ̃1) for
mode 1, to find

dzI0 = −κ0I0 −
∫
dω1

ω0

ω1
Γ̃1I0i1, (26)

−∂zi1 = −κ1i1 + Σ̃1 + Γ̃1I0i1. (27)

As for Γ̃1, the over-tilde on Σ̃1 denotes it will be modified
due to focusing.
I0 and i1 represent integrals over solid angles in k

space, which we now specify. Absolute solid angles are
needed in the noise sources, and cannot be simply scaled
away, because scattered intensities determine pump de-
pletion. We follow closely Bekefi’s book [18] in this sec-
tion. We take Ii = ΩiIi,Ω for i = 0, 1 (see Secs. 1.6 and
1.7 of Bekefi). Ii,Ω is the intensity per solid angle interval
dΩ in k space, which we assume is constant over the solid
angle Ωi that participates in the scattering. Ωi is the lo-
cal (in z) solid angle in the plasma, which we express in
terms of a cone half-angle θp,i as

Ωi ≡ 2π(1− cos θp,i). (28)

From Snell’s law, θp,i varies with z according to

cos θp,i =

{
0 if ne ≥ nci cos2 θv
[1− η−2

i sin2 θv]1/2 otherwise.
(29)

nci cos2 θv is the “critical density” above which we cut off
backscatter (Γ̃1 = Σ̃1 = κ1 = 0). θv is a “vacuum” cone
angle, which we find from the solid angle in the beam’s F-
cone (for simplicity we use the same solid angle for pump
and scattered light). This is reasonable if the scattering
mostly occurs in laser speckles that are near diffraction-
limited. In terms of laser optics F-number F ,

cos θv ≡
[
1 +

1
4F 2

]−1/2

≈ 1− 1
8F 2

, (30)

Ωvi ≡ 2π(1− cos θv) ≈ π

4F 2
. (31)

The approximate forms apply for F À 1.
The upshot of the solid angle discussion (see especially

Eq. (1.133) of Bekefi) is

Σ̃1 = Ω1j(ω1), (32)

where j(ω) is the emission coefficient, per dΩ and in one
polarization (see p. 134 of Bekefi):

j(ωi) =
ηi

12π3
√

2π

ω4
pe

vTe

mere
c

∑

j∈ions

nj
ne
Z2
j lnΛej . (33)

ln Λej is sometimes called the Gaunt factor and resembles
the Coulomb logarithm, although it arises in calculations

without ad hoc cutoffs on impact parameter integrals (see
Chap. 3 of Bekefi). For the case ωi > ωpe, Bekefi finds
Λej = vTe/(ωibmin) where

bmin =

{
γ
4

h̄√
meTe

if Te > 77Z2
j eV,

(
γ
2

)5/2
Zjre

mec
2

Te
otherwise.

(34)

The first, high-Te case typically applies for hohlraum con-
ditions. The numerical pre-factors come from a detailed
binary-collision calculation, and γ = eC ≈ 1.781 where
C ≈ 0.577 is the Euler-Mascheroni constant. Our ex-
pression for j does not include the enhanced emission for
ωi ≈ ωpe due to collective effects [19].

We find the absorption coefficient κi via Kirchoff’s law
(see Bekefi Sec. 2.3):

κi =
Ωi
Ωvi

j(ωi)
Bv(ωi)

. (35)

Our κi equals Bekefi’s αω. Bv is the vacuum blackbody
spectrum for one polarization, with units dI/(dω dΩ):

Bv(ω) ≡ h̄

8π3c2
ω3

eh̄ω/Te − 1
(36)

≈ ω2Te
8π3c2

h̄ω ¿ Te. (37)

j given above was found for collision durations short com-
pared to the light-wave period, which entails the Jeans
limit h̄ω ¿ Te. We therefore use the approximate form
of Bv to obtain

κi =
√

2
3
√
π

Ωi
Ωvi

recηi
ω2
i

ω4
pe

v3
Te

∑

j∈ions

nj
ne
Z2
j ln Λej . (38)

For an optically thick plasma (∂zi1 = 0) with no pump
(I0 = 0), we obtain for i1 from Eq. (27) the fluctuation
level iOT

1 :

iOT
1 ≡ Σ1

κ1
=

Ωv1
f
Bv(ω1). (39)

f and Σ1 are defined in Sec. II F. We thus recover the
blackbody spectrum, required by Kirchoff’s law. The
factor η2

1 that usually appears in the blackbody spectrum
in a plasma is absent due to our treatment of solid angles.

E. Thomson scattering

Thomson scattering (TS) refers to scattering off
plasma-wave fluctuations resulting from particle discrete-
ness ([20], p. 308). Had we retained a separate plasma
wave equation, the fluctuations would appear in it as
Čerenkov emission [6]. It is an important noise source
for backscatter, especially for SBS. We express ∆p1, the
TS scattered power increment per dω1 per dΩ1 (k1 solid
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angle), within a thin slab of width ∆z, as

∆p1 =
dσ

dω1dΩ1
I0 (40)

dσ

dω1dΩ1
= neA(z)∆zψr2e

S

2π
. (41)

A(z) is the beam area, defined in Sec. II F. ψ ≡ 1 −
sin2 θs sin2 θa is a geometric factor. θs is the angle be-
tween ~k0 and ~R, the vector from source to “observation
point”. For a beam with large F , θs ∼ θv ¿ 1. θa is the
angle between ~R and the pump polarization. We usually
take ψ = 1.

The form factor S (units of time) is from Eq. (138) of
Ref. [20], valid for arbitrary (non-Maxwellian) distribu-
tions, generalized to multiple ion species:

|ε|2
2π

S(~k, ω) = |1 + χI |2Fe + |χe|2
∑

j∈ions

nj
ne
Z2
jFj(42)

Fj ≡
∫
d3v fj(~v)δ(ω + ~k · ~v). (43)

fj is the distribution function of species j (
∫
d3v fj = 1).

For a Maxwellian,

Fj =
1

kvTj
√

2π
e−ζ

2
j =

(kλDj)2

πω
Imχj , (44)

and

ω|ε|2
2(kλDe)2

S = gτ ≡ |1 + χI |2Imχe + |χe|2
∑

j∈ions

Tj
Te

Imχj .

(45)
This form agrees with the multiple-ion result in Eq. (3)
of Ref. [21]. Henceforth we assume Maxwellian distribu-
tions.

From Eq. (40) we form a differential equation for i1
that describes TS:

∂zi1|TS = τ1I0 τ1 ≡ Ω1

AI0

∆p1

∆z
. (46)

Since TS transfers energy from the pump to the scattered
waves, we include it in both equations:

dzI0 = −κ0I0 −
∫
dω1

ω0

ω1
I0(τ1 + Γ̃1i1), (47)

−∂zi1 = −κ1i1 + Σ̃1 + I0(τ1 + Γ̃1i1). (48)

For conevience we write τ1 as

τ1 = Ω1ner
2
eψ
S(k2, ω

′
2)

2π
=
τSgτ
|ε|2 , (49)

τS ≡ Ω1ψ

π
ner

2
e

(k2λDe)2

ω′2
. (50)

τ1 is always positive, while τS and gτ have the same sign
as ω′2 (which can be negative for IAW’s when the plasma
flow is supersonic along ~k0).

It is useful to note that iτ ≡ τ1/Γ1 sometimes plays
the role of an effective seed level for i1:

iτ ≡ τ1
Γ1

=
τSgτ
ΓSgΓ

. (51)

For the special case Ti = Te, we have gτ = gΓ and iτ is
independent of χj :

iτ =
τS
ΓS

=
Ω1ψ

(2π)3
ω0

ω′2
Tek0|k1|, Ti = Te. (52)

This fact is used in Sec. VI to discuss the relation of TS
to linear gain.

F. Whole-beam focusing

We wish to incorporate the effects of whole-beam fo-
cusing in a simple way. The equations as written hold
locally in z, but do not model focusing. To do this,
we treat the transverse intensity patterns of I0 and I1
to be uniform flattops of varying area A(z). The beam
focuses at the focal spot zF , where A attains its min-
imum A(zF ). Let Ĩi ≡ Ii(z)/f(z) be the total power
at z divided by the focal spot area, with focusing factor
f ≡ A(zF )/A(z) ≤ 1. We typically employ for f the
result for the on-axis intensity of a gaussian beam [22]:

f = [1 + (z − zF )2/z2
0 ]−1 (53)

where z0 is an effective Rayleigh range. For a Gaussian
beam with optics F-number F , z0 = (4/π)λF 2. This
form approximately fits the random phase plate (RPP)
smoothed beams designed for NIF (for an appropriate
z0).

Substituting (I0, i1) = f ·(Ĩ0, ĩ1) into Eqs. (47-48), and
freely commuting f with ∂z, yields the principal equa-
tions solved by deplete:

dzI0(z) = −κ0I0 − I0

∫
dω1

ω0

ω1
(τ1 + Γ1i1), (54)

∂zi1(z, ω1) = κ1i1 − Σ1 − I0(τ1 + Γ1i1). (55)

Γ1 ≡ f Γ̃1 and Σ1 ≡ f−1Σ̃1. In Eqs. (54-55) and hence-
forth, all Ii and i1 are understood to have suppressed
over-tildes, that is, to refer to total transverse powers
over focal-spot area. Similarly, the plasma-wave ampli-
tude from Eq. (15) can be written

n2

ne
=

1
2
χe
ε

[
ck2

ωpe

]2

f ã0ã
∗
1 (56)

with ã2
i ≡ Ĩiλ

2
i /(Pemηi); see Eq. (5).

All symbols in Eqs. (54-55) are positive, except Γ1 may
be negative for SBS in case ω′2 < 0. This corresponds to
the scattered wave having a higher frequency than the
pump, in the plasma frame. The scattered wave then
gives energy to the pump, and deplete handles this sit-
uation correctly.
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III. RAY METHODOLOGY AND MODEL
LIMITS

deplete calculates LPI along given plasma conditions
for a 1D straight “ray” path. A typical application is to
study a laser beam propagating through conditions given
by a rad-hydro simulation. We use many independent
rays to model the whole beam, which introduces some
statistical inaccuracy. The rays are generally found by
tracing refracted paths through the rad-hydro output.
Although strictly not a part of deplete, this is the major
way it utilizes geometric-optics rays. Wave-optics effects,
such as laser speckles and diffraction (of both the pump
and scattered light), are also not included in deplete.
We present one way to approximate gain enhanacement
due to speckles in Sec. VII.

However, laser intensity is not found from a rad-hydro
simulation. Such codes generally treat a laser beam as a
set of rays, which are absorbed as they trace out refracted
paths. The laser intensity in a zone is found by divid-
ing the total power of all rays crossing that zone by its
transverse area. This approach suffers from several prob-
lems for our purposes, including the fact that intensities
remain finite at caustics only due to the finite number
of rays and zone size. Instead, we run deplete sepa-
rately for each ray, and use a model for the laser beam to
give an initial ray intensity (at a sufficiently low density
that little absorption has occurred) and z-dependent fo-
cusing factor (generally based on vacuum propagation).
The intensity along a ray is thus independent of refrac-
tion that occurs due to the plasma. Refractive changes
in beam intensity occur, for instance, when a beam prop-
agates between two high-density regions. However, our
independent-ray treatment has the benefit that caustics
pose no problem.

deplete also assumes that the laser and scattered
light follow the same path, and thus see the same plasma
conditions. The two light waves refract differently if their
wavelengths differ, as in SRS, or in SBS for certain trans-
verse plasma flows [23]. The departure of ray paths be-
comes significant when the two rays see sufficiently dif-
ferent plasma conditions in the gain region for a given
wavelength that the coupling or other coefficients differ
significantly. This requires sufficiently strong transverse
plasma gradients.

IV. NUMERICAL METHOD

We solve the deplete system Eqs. (54-55) from the
laser entrance z = 0 to the right edge z = Lz. For
backscatter (considered in this paper), we give I0L and
i1R(ω1) as boundary conditions, where fL ≡ f(z = 0)
and fR ≡ f(z = Lz). We solve this two-point bound-
ary value problem via a shooting method, marching from
right to left. We guess I0R and solve the initial value
problem from z = Lz down to z = 0, and iterate un-
til the resulting I0L is sufficiently close to the desired

value. Because I0R is just one scalar, it is more feasible
to shoot on it than on the set of values i1L(ω1). General-
izing our approach to 3D, where one would have to shoot
on I0R(x, y) over a transverse plane, is much more diffi-
cult; a different technique for 3D pump depletion is used
in the code slip [24]. For the right-boundary seed value
i1R, we either use 0 or the optically-thick iOT

1 from Eq.
(39). The choice seems to have little effect, since volume
sources (either TS or bremsstrahlung) typically produce
a comparable or larger noise level after a short distance.

We solve Eqs. (54-55) by operator splitting [25, 26].
Let the operator B solve the “bremsstrahlung” system

dzI0 = −κ0I0, (57)
∂zi1 = κ1i1 − Σ1, (58)

and the operator C solve the “coupling-Thomson” system

dzI0 = −I0
∫
dω1

ω0

ω1
(τ1 + Γ1i1), (59)

∂zi1 = −I0(τ1 + Γ1i1). (60)

To advance the solution from the discrete gridpoint zn
down to zn−1 (the decreasing index matches deplete’s
right-to-left marching), we first apply B for a half-step,
then C for a full step, then B for a half-step again. The
splitting theorem guarantees that if B and C are second-
order accurate operators, then the overall step is second-
order accurate. Schematically, a complete step is

{I0, i1}n−1 = B1/2C1B1/2{I0, i1}n. (61)

In usual applications we are given plasam conditions,
and thus the coefficients in the deplete equations, only
at a discrete set of points {zn}. We use linear interpo-
lation to find the coefficients at the needed intermediate
points, as shown below. We stress that the numerical ac-
curacy of deplete is strongly influenced by the quality
of the given plasma conditions.

A. The bremsstrahlung step B

B must solve Eqs. (57-58) with κi and Σ1 constant,
to at least second-order accuracy. This linear system is
readily solved analytically. Since there are two “half-
steps” of B in Eq. (61), we consider a generic step of size
∆z with initial conditions {I0, i1}1, yielding new values
{I0, i1}0 . X1/2 = (X0+X1)/2 denotes the zone-centered
value of some quantity X. If κ1/2

1 6= 0, we find

I0
0 = I1

0 exp[κ1/2
0 ∆z], (62)

i01 = (i11 − i
OT,1/2
1 ) exp[−κ1/2

1 ∆z] + i
OT,1/2
1 . (63)

Eq. (63) applies separately at each ω1. For the special
case κ1/2

1 = 0, Eq. (63) is replaced with

i01 = i11 + Σ1/2
1 ∆z (κ1/2 = 0). (64)



7

The rightmost B in Eq. (61) advances the system from
zn to zn−1/2. Accordingly, for this step, the needed co-
efficients in Eqs. (62-64) are interpolated at 1/4 the way
from zn to zn−1: X1/2 = [(1/4)Xn−1 +(3/4)Xn] . Simi-
larly, the leftmost B in Eq. (61) advances the system from
zn−1/2 to zn−1 and uses X1/2 = [(3/4)Xn−1 +(1/4)Xn].
In both cases ∆z = (zn − zn−1)/2.

B. The coupling-Thomson step C

We now turn to the C operator. I0 is evolved via a
conservation law of the C system, Eqs. (59-60):

dz

[
I0 −

∫
dω1

ω0

ω1
i1

]
= 0. (65)

On the discrete z grid, this gives

In−1
0 = In0 +

∫
dω1

ω0

ω1
(in−1

1 − in1 ). (66)

Before doing this, we must advance i1 using Eq. (60)
with constant I0 = In0 (that is, we neglect pump deple-
tion within a zone). This gives rise to a numerical chal-
lenge. Namely, the coefficients τ1 and Γ1 are both pro-
portional to |ε|−2, and contain a narrow resonance where
Re ε = 0 if Im ε is small (that is, where the beating of the
light waves drives a natural plasma wave). Integrating
through these sharp peaks with a standard ODE method
like Runge-Kutta performs very poorly unless the res-
onance is well-resolved by the z grid (which it usually
is not). To alleviate this problem, the key observation
is that ε itself varies slowly in space, even though |ε|−2

varies rapidly near resonance. We can therefore represent
ε as linearly varying with z across a cell, and analytically
solve the resulting system. We merely quote the result
here, and refer the reader to Appendix B for the deriva-
tion and definition of the relevant quantities:

in−1
1 = (in1 + iτ )eBΓ∆wn − iτ . (67)

V. BENCHMARK ON LINEAR PROFILES

This section compares the results of deplete with
those of newlip and pf3d on two contrived profiles with
weak linear gradients, one for SRS and another for SBS.
deplete and pf3d embody quite different physical mod-
els, each with their own approximations and limitations.
One can view their favorable comparison here as a “cross-
validation” of these models in a regime where they should
agree.

To compare with the newlip linear gain Gl (see Ap-
pendix A), we need a noise level against which to compare
the deplete scattered spectrum at the laser entrance,
i1L. For this noise level we choose ibr1 at z = 0, given
by solving Eq. (55) with just the bremsstrahlung terms
(I0 → 0):

∂zi
br
1 = κ1i

br
1 − Σ1. (68)

This is exactly Eq. (58). We then introduce the deplete
gain Gd:

Gd ≡ ln
i1L
ibr1L

=
“scattering′′

“noise′′
, (69)

where i1L is the solution to the full deplete equations.
Gl and Gd are exactly equal under the following condi-
tions: there is no pump depletion, no TS (τ1 = 0), no
absorption of scattered light (κ1 = 0), and no volume
bremsstrahlung noise (Σ1 = 0); the only seeding in de-
plete is then via the boundary values i1R(ω1).

A. SRS benchmark

The spatial profiles of our SRS benchmark plasma con-
ditions are shown in Fig. 1. We use a profile length
Lz = 510λ0, pump vacuum wavelength λ0 = (1054/3)
nm, fully-ionized H ions with Ti = 1 keV, and no plasma
flow (~u = 0). In both the deplete and pf3d runs of this
section, SBS was not included. Fig. 2 plots the result-
ing reflectivities for several pump strengths. Although
these are all above the homogeneous absolute instabil-
ity threshold of Iab0 ≈ 0.21 PW/cm2, the time-dependent
pf3d runs rapidly approach a steady state and show no
signs of a temporally-growing mode [42]. The weak gra-
dients, or incoherent noise source, may lead to stabiliza-
tion. After increasing exponentially with I0L for weak
pumps, the reflectivity rolls over. This saturation due to
pump depletion is generic for three-wave interactions in
the strong damping limit, as demonstrated analytically
by Tang [27].

We compare the gains Gl and Gd from newlip and de-
plete, for several pump strengths, in Fig. 3. The general
shapes of the gains are quite close, although their abso-
lute levels differ. For the weakest pump strength, where
pump depletion plays little role (as can be inferred from
the reflectivity plot in Fig. 2), the peak Gd is slightly
higher than Gl. This is due to the volume sources in de-
plete, namely TS and bremsstrahlung noise. To illus-
trate this, we plot Gd found with no Thomson scattering
(τ1 = 0) as the black dotted curve. It lies between the
two other curves near the peak, and overlaps Gl away
from the peak. The curves for the two larger values of
I0L in Fig. 3 show Gd to be progressively farther below
Gl at peak. This results from pump depletion, which the
reflectivity plot clearly shows is significant for I0L >∼ 0.8
PW/cm2. The bremsstrahlung noise level ibr1 varies be-
tween (2.4-4.1)×10−9 W/cm2/(rad/sec) over λ1 = 650
to 550 nm.

We also compared deplete to the massively-parallel,
paraxial laser propagation code pf3d [28]. This code
solves for the slowly-varying envelopes of the pump laser,
nearly-backscattered SRS and SBS light waves, and the
daughter plasma waves, in space and time. A carrier
ωen is chosen for each mode (except for the ion acoustic
wave), and the corresponding rapid time variations are
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FIG. 1: Plasma conditions for SRS benchmark.
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FIG. 2: (Color online.) SRS reflectivity vs. pump intensity
for the SRS benchmark profile of Fig. 1. The black circles
and red squares are for pf3d and deplete, respectively.

averaged over. A local eikonal ken, given by the appro-
priate ωen and dispersion relation with local plasma con-
ditions, contains the rapid space variation. Kinetic quan-
tities, such as Landau damping rates and Thomson cross-
sections, are variously found from (linear) kinetic formu-
las or fluid approximations. There is no bremsstrahlung
source, but the pump and scattered light waves all ex-
perience inverse-bremsstrahlung damping. The plasma
waves undergo Landau damping, and the advection term
vg2∂xn2 is retained (i.e., they are not treated in the
strong damping limit). The noise source in pf3d is
plasma-wave fluctuations chosen to produce the correct
TS level, and uniformly distributed over a square in k⊥
space (corresponding to the transverse x and y direc-
tions) extending to half the Nyquist k in both kx and
ky.

To replicate the 1D model of deplete, we performed
“plane-wave” simulations in pf3d. The incident laser
at the z = 0 entrance plane is uniform in the x and y
directions (i.e., there is no structure like speckles), both
of which are periodic with size Lx = Ly = 128λ0 and grid
spacing dx = dy = 1.33λ0. The z spacing is dz = 2λ0.
As described above, the TS noise fills a square in k⊥
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FIG. 3: (Color online.) deplete gain Gd (black solid),
newlip gain Gl (red dashed), and Gd with no TS for I0L = 0.4
PW/cm2 (τ1 = 0, black dots), for SRS benchmark. TS
and volume bremsstrahlung noise enhance Gd over Gl for
the smallest I0L, while pump depletion suppresses Gd for the
larger two.

space extending to kx, ky = ±k1n, with k1n = (3/16)k0v

and k0v ≡ ω0/c. We enveloped the SRS backscattered
light around ωen1 = 0.592ω0 (λ1=593.3 nm), which has
the highest linear gain. Over the slight variation of our
profile, the average ken1 = 0.461k0v.

deplete requires a solid angle Ωc, which we express
in terms of an F-number F , for TS and bremsstrahlung
emission (we excluded the latter for pf3d comparisons).
Taking ken1 and k1n to determine the focal length and
spot radius, one finds F = ken1 /2k1n = 1.23. The scat-
tered light does not uniformly fill the noise square in k⊥
space, but rather develops into a somewhat hollow “ring”
with a radius ≈ 0.12k0v (departing more from a square
for stronger pumps); there is some ambiguity in the ap-
propriate F to use. We choose F = 1, which leads to
very close reflectivities for the weakest-pump case shown
in Fig. 2, and is near the noise-square estimate F = 1.23.
Sidescatter at these angles may stress the accuracy of
pf3d’s paraxial approximation.

Figure 2 shows the deplete and pf3d SRS reflectiv-
ities for the benchmark profile. The pf3d values are
taken at t =39.4 ps, after which time all reflectivities
remain roughly constant (the laser ramped from zero to
full strength over 10 ps). The agreement is quite good,
especially in the linear (weak pump) and the strongly-
depleted (strong pump) regimes. This increases confi-
dence in the validity of the different approximations made
in both codes. It took about 2 secs of wall time for de-
plete to run on one Itanium CPU, as opposed to 5300
secs on 16 of these CPUs for pf3d to advance 10 ps.

B. SBS benchmark

We performed an SBS benchmark (with SRS ne-
glected) using the profiles in Fig. 4. The ions were fully-
ionized He (Z = 2, A = 4) with Ti = Te/5. The parallel
flow velocity u is shown normalized to the local acous-
tic speed c2a ≡ (ZTe + 3Ti)/Amp. The pump wavelength
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FIG. 4: SBS benchmark profile.

and profile length match the SRS benchmark. The SBS
reflectivity vs. pump strength is plotted in Fig. 5, which
shows pump depletion for I0L >∼ 1.25 PW/cm2. We es-
timate the absolute threshold Iab0 = 2.6 PW/cm2 and
stay below this. We used F = 1.7 since this gives good
agreement with pf3d “plane-wave” simulations for low
I0. However, for larger values of I0 a ring in k⊥ space
develops, similar to the SRS runs, and is accompanied by
a large increase in reflectivity.

Figure 6 compares the deplete and newlip gains, Gd
and Gl. For the smaller two pumps we see the enhance-
ment of Gd over Gl due to TS (even though pump deple-
tion has set in for the second case I0L = 1.4 PW/cm2),
as discussed in Sec. VI. The dotted black curve for I0L =
0.6 PW/cm2 is Gd computed with no TS, and shows the
modest increase in Gd stemming from bremsstrahlung
volume (as opposed to boundary) noise. The elevated
plateau of Gd to the left of the peak is also due to
TS. I0L =2.5 PW/cm2 gives Gd < Gl due to strong
pump depletion. In all cases the wavelength and width
of the main peak of the two spectra are similar. ibr1 ,
the bremsstrahlung solution, varies slightly from (4.17-
4.25)×10−9 W/cm2/(rad/sec) over λ1 − λ0 = 20 to -3
Å.

VI. THE RELATION OF THOMSON
SCATTERING TO LINEAR GAIN

As seen in our benchmark runs, TS leads to an en-
hancement of the deplete gain compared to the newlip
gain (for negligible pump depletion). This is readily seen
via the scattered-wave equation with just coupling and
TS, Eq. (60):

∂zi1 = −I0(τ1 + Γ1i1). (70)

We use Eq. (51) to obtain

∂zi1 = −γ(iτ + i1). (71)

γ ≡ I0Γ1 is the spatial gain rate. Typically, γ has a
narrow peak in z at the resonance point, while iτ varies
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FIG. 5: SBS reflectivity for SBS benchmark profile. The
squares are deplete results, and the dashed line is an ex-
tension of the low-I0L results.
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FIG. 6: (Color online.) SBS deplete gain Gd (black solid),
newlip gain Gl (blue dashed), and Gd without TS for
I0L =0.6 PW/cm2 (τ1 = 0, black dotted), for SBS bench-
mark profile.

slowly. For simplicity, we hold iτ constant at the reso-
nance point, and solve for i1 across the region z = 0 to
Lz which includes the resonance. In our usual notation,

i1L = (i1R + iτ )eGl − iτ . (72)

Gl ≡
∫ Lz

0
dz γ is the newlip linear gain. For Gl ¿ 1,

i1L = i1R(1+Gl)+ iτGl, and emission due to the bound-
ary source dominates over TS. In the opposite limit,

i1L = (i1R + iτ )eGl , eGl À 1. (73)

TS therefore gives rise to an effective boundary source
iτ (for a narrow resonance). In this sense, it does not sig-
nificantly alter the shape of the gain spectrum (iτ varies
slowly with ω1). However, it does lead to a difference
in the absolute magnitude of the scattered spectrum, as
embodied in an “absolutely-calibrated” gain like Gd. As
an illustration, let us take i1R = iOT

1 , the optically-thick
bremsstrahlung result of Eq. (39), for simplicity evalu-
ated at the resonance point in the Jeans limit h̄ω1 ¿ Te.
Moreover, we set Ti = Te so that iτ assumes the simple
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form of Eq. (52). The effective seed is then

i1R + iτ → iOT
1

(
1 +

Ω1

Ωv1
ψfη0η1

ω0

ω1

ω0

ω′2

)
. (74)

The second term on the right (= iτ/i
OT
1 ) is typically <∼ 10

for SRS: for our SRS benchmark, iτ/iOT
1 ≈ 3. But, it can

be quite large for SBS since ω0 À ω′2 (for our SBS bench-
mark, iτ/iOT

1 ≈ 400). A similar result is found in Ref. [6].
The authors explain this on the thermodynamic ground
that bremsstrahlung and Čerenkov emission (which pro-
duces TS) generate equal light- and plasma-wave action,
so the light-wave energy dominates by the frequency ra-
tio. This manifests itself in the ω0/ω

′
2 factor in Eq. (74),

which is much larger for SBS.

VII. SIMULATION OF SBS EXPERIMENTS

Experiments have been conducted recently at the
OMEGA laser to study LPI in conditions similar to
those anticipated at NIF [29]. These shots use a gas-
filled hohlraum, and a set of “heater” beams to pre-
form the plasma environment. An “interaction” beam is
propagated down the hohlraum axis after being focused
through a continuous phase plate (CPP) [30] with an
f/6.7 lens to a vacuum best focus of 150 µm. The plasma
conditions along the interaction beam path have been
measured using TS [31], validating 2-dimensional hydra
[32] hydrodynamic simulations that show, 700 ps after
the rise of the heater beams, a uniform 1.5-mm plasma
with an electron temperature of ≈2.7 keV [33].

Figure 7(a) displays the instantaneous SBS reflectivity
increasing exponentially with the interaction beam in-
tensity 700 ps after the rise of the heater beams. These
experiments employed a 1 atmosphere gas-fill with 30%
CH4 and 70% C3H8 to produce an electron density along
the interaction beam path of 0.06nc0. Three-dimensional
pf3d simulations agree well with the experiments [34].
Unlike the plane-wave simulations discussed in Sec. V A,
these simulations include the full speckle physics. The
deplete results (blue solid curve) fall well below the
experimental data in the regime where pump depletion
does not play a significant role (I0 <∼ 2 PW/cm2). This
indicates that speckles are enhancing the SBS.

One way to approximate the speckle enhancement is
to consider how much the coupling increases for the
completely phase-conjugated mode [35]. This mode has
a transverse intensity pattern perfectly correlated with
that of the pump, over several axial ranks of speckles,
and therefore enhances the coupling coefficient Γ1 [36].
For an RPP-smoothed beam with intensity distribution
∼ e−I/Ic , this effectively doubles Γ1. This should pro-
vide an upper bound on the reflectivity so long as the
gain per speckle is <∼ 1. If this is not the case, the gain in
a speckled pump suffers a mathematical divergence (mit-
igated by pump depletion) as described in Ref. [37]. Our
phase-conjugate considerations would then not apply.

The blue dashed curve in Fig. 7 shows the deplete re-
sults with twice the nominal coupling. The 2×Γ1 curve is
always above the experimental reflectivities. The thresh-
old intensity for which SBS equals 5% is 1.8 PW/cm2 and
0.9 PW/cm2 for deplete with the nominal and twice-
nominal coupling, respectively, while the experimental
threshold is ≈1.5 PW/cm2.

Comparison of deplete and pf3d is displayed in Fig.
7(b). These calculations were performed using plasma
conditions from a hydra simulation, for a configuration
similar to that of Fig. 7(a), but with a higher heater-beam
energy. The resulting conditions are similar, except the
electron temperature is higher (about 3.3 keV). The de-
plete reflectivity with the nominal coupling (solid blue
curve) lies below the pf3d results for the two interme-
diate values of I0. This demonstrates speckle effects en-
hance the pf3d reflectivity for moderate I0. The de-
plete results for 2 × Γ1 (dashed blue curve) are always
above the pf3d results. Preliminary analyses with de-
plete and pf3d of OMEGA experiments designed to
study ion Landau damping in SBS [10] also show a sig-
nificant enhancement due to speckles.

VIII. ANALYSIS OF NIF IGNITION DESIGN

In this section, we exercise deplete on an actual NIF
indirect-drive ignition target design. The target was de-
signed using the hydrodynamic code lasnex [38]. For
more details about the design see Ref. [39]; LPI analysis
for this and similar ignition targets, including massively-
parallel, 3D pf3d simulations, can be found in Ref. [40].
The design utilizes all 192 NIF beams (at 351 nm “blue”
light), which deliver 1.3 MJ of laser energy. We analyze
LPI along the 30◦ cone of beams (one of the two “in-
ner” cones). The pulse shape for one quad (a bundle of
four beams), expressed as nominal intensity at best fo-
cus, is shown in Fig. 8, and reaches a maximum of 0.33
PW/cm2. The speckle pattern for a quad approximately
corresponds to an F-number of F = 8, which we use for
deplete’s noise sources (but each beam individually has
F = 20 optics). The focal spot is elliptical with semi-axis
lengths of 693, 968 µm. The peak temperature of the ra-
diation drive is 285 eV. The materials are as follows: the
capsule ablator is Be, a plastic (CH) liner surrounds the
laser entrance hole, the hohlraum wall is Au-U with a
thin outer layer of 80% Au-20% B (atomic ratio), and
the initial fill gas is 80% H-20% He. The lower-Z com-
ponents are included in the last two mixtures to reduce
SBS by increasing the ion Landau damping of the acous-
tic wave.

We performed deplete calculations, with both SRS
and SBS, at several times and over 381 ray paths for
each time. One must take an appropriate “average” over
the rays to characterize the LPI on a cone. Regarding
newlip gains, this has led to several approaches. These
include averaging the gain, finding the maximum gain,
or averaging eGl . This last method stems from assuming
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FIG. 7: (Color online.) (a) SBS reflectivity for OMEGA ex-
periments with CH gas fill and Te ≈ 2.7 keV (described in
text). Black circles are measured values, the blue solid curve
is deplete calculations with the nominal coupling Γ1, and
the blue dashed curve is deplete calculations with 2 × Γ1.
(b) deplete and pf3d SBS reflectivities for a similar config-
uration but Te ≈ 3.3 keV. Black crosses are pf3d simulations,
and the blue curves are the deplete results as in (a).
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nition design (“NIF example”), found by dividing the laser
power per quad by the focal spot size. The peak intensity
corresponds to 6.9 TW/quad.
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FIG. 9: (Color online.) Materials and laser beam cones for
NIF example.

there is no pump depletion and noise sources are inde-
pendent of scattered frequency; in this limit, the reflec-
tivity should be roughly proportional to eGl . However,
this averaging, and a fortiori taking the maximum, can
be dominated by gains that are larger than physically al-
lowed by pump depletion or other nonlinearity. One can
attempt to include pump depletion via a Tang formula
for Gl at each ω1 [27].

deplete allows for more physical ray-averaging
schemes. To the extent the transverse intensity pattern
of a cone is uniform, each ray should be taken to represent
the same incident laser power. Averaging deplete’s ray
reflectivities then measures the fraction of incident power
that gets reflected. Pump depletion is of course included,
which limits backscatter along high-gain rays in a physi-
cal way. The reflectivities and scattered spectra plotted
here are simple averages over the rays.

The ray-averaged reflectivities for several times near
peak laser power, for the 30◦ cone, are shown in Fig. 10.
The results for three different cases are presented. First,
the solid lines give the reflectivities computed with the
unmodified deplete equations. To quantify the role of
re-absorption of scattered light in the target, we re-ran
deplete with κ1 = 0. This leads to the dashed lines.
Finally, to bound the enhancement due to speckles, we
plot the results when Γ1 is doubled (and κ1 6= 0) as the
dotted lines.

The spectra of escaping SRS and SBS light (averaged
over rays) are shown in Fig. 11-12. The SBS feature at
a wavelength shift of 5-8 Å comes from the Be ablator
blowoff. A much weaker feature appears from 12-13 ns
at 12-15 Å, and occurs in the gas fill. The SRS spectrum
is more irregular, showing two main features separated
by ≈20 nm that move to higher λ1 as time increases.
In addition, there are narrow features at higher λ1 that
originate near the hohlraum wall; these would be reduced
in a ray-averaged gain, since the exact λ1 active for each
ray depends sensitively on conditions near the wall and
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FIG. 10: (Color online.) deplete SRS and SBS ray-averaged
reflectivities I1L for NIF example. Solid lines are the nominal
case (re-absorption and Γ1 unscaled), dashed lines are the
nominal Γ1 but no re-absorption of scattered light (κ1 = 0),
and dotted lines are 2× Γ1 with re-absorption.

FIG. 11: (Color online.) SRS streaked spectrum i1L for NIF
example, nominal case (κ1 6= 0, 1× Γ1).

therefore varies from ray to ray. Re-absorption strongly
suppresses these high-λ1 spikes, as is seen in the SRS
spectra with and without re-absorption at t = 13.75 ns
in Fig. 13. Collisional plasma-wave damping, currently
not in deplete, may reduce the high-λ1 scattering (the
Landau damping of the low-k2λDe plasma waves is neg-
ligible).

Besides backscatter, deplete also provides the pump
intensity I0(z) along each ray. This indicates how much

FIG. 12: (Color online.) SBS streaked spectrum for NIF ex-
ample, nominal case (κ1 6= 0, 1×Γ1). The white-yellow streak
from 5-8 Å occurs in the Be ablator, while the weaker feature
from 12-15 Å occurs in the gas fill.

FIG. 13: (Color online.) deplete SRS spectrum at time
13.75 ns for NIF example, smoothed over ≈ 1 nm. The black
solid and red dashed lines are computed with (κ1 6= 0) and
without (κ1 = 0) re-absorption of scattered light, respectively.

laser energy is transmitted to a given location, which is
a crucial aspect of a whether LPI degrades target per-
formance. In cases where the backscattered light under-
goes significant absorption as it propagates out of the
target (as happens to SRS for the design analyzed here),
the measured reflectivity can understate the level of LPI.
The laser transmission can reveal this fact. Figure 14(a)
presents I0, averaged over all the rays, at a given ne.
This is a 1D presentation of how much energy reaches a
given density, although in the full 3D geometry different
rays reach the same ne at different locations. I0 with
just pump absorption, as well as the deplete solutions
with pump depletion for the nominal case and 2×Γ1, are
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FIG. 14: (Color online.) (a) Laser transmission for NIF exam-
ple at 12.5 ns (peak power): black solid curve is the nominal
deplete solution with pump depletion, red dashed curve is
with just inverse-bremsstrahlung absorption, and black dot-
ted curve is the deplete solution with 2×Γ1. (b) SBS (blue)
and SRS (red) scattered intensities for the nominal deplete
solution. Calculation of intensity at a given ne is described
in text.

shown. Pump depletion is barely discernible in the nomi-
nal case, but is significant in the 2×Γ1 case. For instance,
in the latter case I0 at ne/nc0 = 0.2 is only 60% of its
absorption-only value. The wavelength-integrated SRS
and SBS I1 are shown in Fig. 14(b), and the scattered
spectra vs. ne are shown in Figs. 15-16. SRS in particu-
lar develops at several different densities, corresponding
to different wavelengths, as can be seen in Figs. 13 and
15.

IX. CONCLUSIONS AND FUTURE
PROSPECTS

We have derived a 1D, steady-state, kinetic model for
Brillouin and Raman backscatter, that includes pump de-
pletion, bremsstrahlung damping and fluctuations, and
Thomson scattering. This model is implemented by the
code deplete, which we have presented as well. This
work extends linear gain calculations, by including more
physics while retaining its low computational cost. In
particular, deplete provides the scattered-light spec-
trum and intensity developing from physical noise, which
can be compared against more sophisticated codes and
experiments. The transmitted pump laser along the ray

FIG. 15: (Color online.) SRS spectral density i1 vs. ne/nc0

and λ1, in decibels, at 12.5 ns (peak power), for NIF example.

FIG. 16: (Color online.) SBS spectral density i1 vs. ne/nc0

and λ1 − λ0, in decibels, at 12.5 ns (peak power), for NIF
example.

is also found, which is important for assessing an ICF
target design, especially when re-absorption of scattered
light reduces the escaping backscatter from its internal
level.

We presented benchmarks of deplete on contrived,
linear profiles, as well as analysis of OMEGA experi-
ments and a NIF ignition design. The benchmarks re-
veal the deficiencies of linear gain, namely the neglect
of TS, pump depletion, and re-absorption. Comparisons
with pf3d provide a cross-validation of the two codes in
a regime where they should agree. The OMEGA SBS
experimental data, as well as pf3d simulations of these
shots, show much more reflectivity than deplete gives,
for intensities where pump depletion is weak. This en-
hancement is due to speckle effects. We showed an upper
bound on this enhancement is given by doubling the de-
plete coupling coefficient Γ1, which comes from consid-
ering the phase-conjugated mode in an RPP-smoothed
beam. The ignition design analysis gives reasonably low
backscatter levels for the nominal laser intensity and in-
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cluding re-absorption, with SRS dominating SBS. How-
ever, if re-absorption is neglected, or especially if Γ1 is
doubled, the backscatter appears more worrisome. The
laser transmission supports these conclusions.

Ray-based gain calculations have been used for some
time to model LPI experiments, and deplete can pro-
vide more details comparisons. An early application of
gain to hohlraum targets is Ref. [41], where hohlraums
filled with CH gas were driven by laser beams with and
without PS and SSD. Without SSD, decent agreement
was found between measurments and the time-dependent
SBS gain spectrum. However, there was a large difference
in peak SRS wavelength between measurements and the
gain spectrum, which may be due to laser filamentation
changing the location of peak SRS growth.

Several directions exist for enhancing deplete. One
is an “independent speckle” model to include gain en-
hancement. This entails solving the deplete equations
over a speckle length, for a distribution of pump inten-
sities chosen to obey the known speckle statistics, and
then redistributing the power (since the speckle pattern
changes over a speckle length). This would not be valid
if correlated among axial ranks are important, e.g. for a
fully phase-conjugated mode.

deplete also enables some new diagnostics and ap-
plications. The pump and scattered intensities found by
deplete can be used to compute the local material heat-
ing rate due to absorption. This could be incorporated
into a hydrodynamic code, thereby coupling LPI to target
evolution in a self-consistent, if simplified, way. In addi-
tion, the plasma-wave amplitudes found by deplete can
be compared against thresholds for various nonlinearities
to assess their relevance, and may allow estimation of hot
electron production by SRS.

Despite its promise, there are limits inherent to any 1D
ray-based approach, stemming from 3D wave optics (e.g.
diffraction, speckles, filamentation, and beam bending).
A 3D paraxial code called slip [24], which like deplete
operates in steady state and uses kinetic coefficients, is
being developed. This model is in some sense interme-
diate between deplete and pf3d. Ray-based codes like
deplete still have a valuable role. They can analyze
hundreds ray, using hundreds of scattered wavelengths, in
∼ minutes, thus allowing designs to be rapidly analyzed
and compared. The resulting time-dependent spectra al-
low for contact with experimental diagnostics, and are
frequently needed, for example, to choose the carrier k
and ω for pf3d.

Laser-plasma interactions have proven to be a very
challenging area of plasma physics, owing to the variety
of relevant physics and extreme range of scales involved.
This has led to an equally extreme range of modeling
tools, from ray-based gain estimates to 3D kinetic simu-
lations. By fully exploiting these tools, each with their
uses and limitations, a more complete picture is emerg-
ing.
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APPENDIX A: NEWLIP

In this appendix, we document the laser interaction
post-processor newlip, of which deplete can be viewed
as an extension. The equations underlying newlip are

dzI0(z) = −κ0I0, (A1)
∂zi1(z, ω1) = −I0Γ1i1. (A2)

The first of these is Eq. (54) with no pump depletion
(τ1 = Γ1 = 0), and the second is Eq. (55) with no
bremsstrahlung or TS (κ1 = Σ1 = τ1 = 0). That is,
only the absorption of the pump, and coherent coupling
to scattered light waves, are modeled. The boundary con-
ditions are I0(z = 0) = I0L (the known pump at the laser
entrance), and i1(z = Lz, ω1) = 1. We thus solve for a
unit scattered-wave boundary seed, which is permissible
for this linear system.

We readily solve Eqs. (A1-A2) to find

I0(z) = I0Le
− R z

0 dz
′ κ0(z

′), (A3)

i1(z) = eGl(z), (A4)

Gl(z) ≡
∫ Lz

z

dz′ Γ1(z′)I0(z′). (A5)

Gl(z) is the linear intensity gain exponent, and is
newlip’s main result. The total gain across the profile
is Gl(z = 0).

The numerical computation of Gl suffers from the
problem of narrow resonances, similar to deplete. The
coupling coefficient Γ1 (see Eq. (17)) is sharply peaked
near the resonance point where Re ε = 0. newlip ad-
dresses this challenge in a way analogous to how deplete
handles the coupling-Thomson step, as outlined in Ap-
pendix B. In particular, the integration of Eq. (A2) from
zn down to zn−1 can be cast in the form

ln
in−1
1

in1
= ImS0, S0 ≡

∫ zn−1

zn

dz
S

ε
, (A6)

with S ≡ −I0fΓSχe(1 + χI). Although S(z)/ε(z) is
sharply-peaked near resonance, S(z) and ε(z) are them-
selves slowly-varying with z. We approximate S(z) ≈
Sn−1/2 + (z − zn−1/2)∆S/∆z (and similarly for ε), with
Xn−1/2 ≡ (Xn + Xn−1)/2 and ∆X ≡ (Xn − Xn−1)
for some quantity X . With this representation, and
X̂ ≡ Xn−1/2/∆X, we find

S0 =
∆z∆S

∆ε

[
1 + (ε̂− Ŝ) ln

εn−1

εn

]
. (A7)

nijhuis2
Text Box
with LLNL.
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This formula is valid provided either |Re ε̂| ≥ 1/2 or
Im ε̂ 6= 0. For accuracy, we also want |∆ε| to not be too
small (which obtains, e.g., for a flat profile). We there-
fore require |ε̂| to be less than some large number. If
any of these conditions does not hold, we simply assume
S = Sn−1/2 and ε = εn−1/2 across the cell to find

S0 = ∆z
Sn−1/2

εn−1/2
. (A8)

APPENDIX B: NUMERICAL SOLUTION OF
THE COUPLING-THOMSON STEP

This appendix provides a derivation of Eq. (67), the
solution for i1 in the coupling-Thomson step. We must
solve Eq. (60), from zn down to zn−1, with I0 = In0 and
all coefficients except |ε|2 evaluated at zn−1/2. We write
this equation as

∂zi1 = −Kτ +KΓi1
|ε|2 , (B1)

Kτ ≡ In0 τ
n−1/2
S gn−1/2

τ , KΓ ≡ fIn0 Γn−1/2
S g

n−1/2
Γ .(B2)

As mentioned above, the principal numerical difficulty is
that |ε|−2 is sharply peaked near resonance (Re ε = 0).
Since Re ε generally passes through zero slowly, we Taylor
expand ε within each zone and solve the resulting system
analytically.

Define the zonal average and difference Xn−1/2 ≡
(1/2)(Xn +Xn−1) and ∆X ≡ Xn −Xn−1 for the quan-
tity X. We expand ε about the zone center zn−1/2 to
find

ε ≈ εn−1/2 + ẑ∆ε, (B3)

ẑ ≡ z − zn−1/2

∆z
. (B4)

We can then write

|ε|2 = ε1 + |∆ε|2(ẑ − ẑ0)2, (B5)

ε1 ≡ |∆ε|−2Im
[
εn−1/2∆ε∗

]2

, (B6)

ẑ0 ≡ −|∆ε|−2Re
[
εn−1/2∆ε∗

]
. (B7)

The linear change of variable

s ≡ |∆ε|√
ε1

(ẑ − ẑ0) (B8)

transforms Eq. (B1) to

∂si1 = −Bτ +BΓi1
1 + s2

, (B9)

Bτ,Γ ≡ Kτ,Γ∆z
|Im [

εn−1/2∆ε∗
] | . (B10)

A second change of variable to w ≡ atan s yields

∂wi1 = −(Bτ +BΓi1). (B11)
This equation is solved to give the result used in Eq. (67):

in−1
1 = (in1 + iτ )eBΓ∆wn − iτ , (B12)

∆wn ≡ atan sn − atan sn−1. (B13)

iτ = Bτ/BΓ is also given by Eq. (51).
If ∆ε is sufficiently small (or zero, as for a flat profile),

we do not use Eq. (B3), but instead ε ≈ εn−1/2. We can
then immediately solve Eq. (B1) to find

in−1
1 = (in1 + iτ ) exp

[
KΓ|εn−1/2|−2∆z

]
− iτ . (B14)
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